Coupling types

Flexible jaw coup	blings
ROTEX®	Flexible coupling (see page 24)
170	– Flexible – Maintenance-free
	– Fail-safe
V	- Compact dimensions
POLY-NORM®	Flexible coupling (see page 24)
al too	– Maintenance-free
Tre-D	- Fail-safe
	– Axial plug-in
POLY	Flexible, shear-type coupling (see page 24)
100 m	– Flexible
100	- Maintenance-free - Shear type
4.4	– Axial plug-in
Gear couplings	,
BoWex®	Torsionally rigid curved-tooth gear coupling [®] . (see page 82)
	– Torsionally rigid
7 10	- Maintenance-free
	- Compact dimensions
	– Single-cardanic or double-cardanic – Axial pluα-in
BoWex [®] HEW Compact	Highly flexible shaft coupling (see page 82)
	- Highly flexible
	- Maintenance-iree
	- Compact dimensions
	– Axial plug-in
Flange couplings	s for I.C engines
BoWex-ELASTIC®	Highly flexible flange coupling (see page 184)
	- Flexible to highly flexible
1 m	- Maintenance-free - Shear type
	- Compact dimensions
	- Single-cardanic - Axial plug-in
MONOLASTIC®	One-piece, flexible flange coupling (see page 184)
	- Flexible
1	- Shear type
	 Compact dimensions Single-cardanic
	– Axial plug-in
BoWex® FLE-PA (PAC)	Torsionally rigid flange coupling (see page 184)
	 Torsionally rigid Maintenance-free
15 19.	- Shear type
a.	– Compact aimensions – Single-cardanic
• •	- Axial plug-in

Terminology of coupling selection

Description	Symbol	Definition or explanation			
Rated torque of cou- pling [Nm]		Torque that can be continuously transmitted over the entire permissible speed range.			
Maximum torque of coupling [Nm]	T _{K max} .	Torque that can be transmitted as dynamic load $\geq 10^5$ times or 5 x 10 ⁴ as vibratory load, respectively, over the entire operating life of the coupling			
Vibratory torque of coupling [Nm]	TKW	Torque amplitude of the permissible periodical torque fluctuation with a frequency of 10 Hz and a basic load of TKN or dynamic load up to TKN, respectively			
Damping power of coupling [W]	Pĸw	Permissible damping power with an ambient tempera- ture of + 30 °C.			
Rated torque of machine [Nm]	Τ _N	Stationary rated torque on the coupling			
Rated torque of driving side [Nm]	TAN	Rated torque of machine, calculated from rated power and rated speed			
Rated torque of load side [Nm]	T _{LN}	Maximum figure of the load torque calculated from power and speed			
Peak torque of machine [Nm]	ΤS	Peak torque on the coupling			
Peak torque of driving side [Nm]	TAS	Peak torque with torque shock on driving side, e. g. tilting moment of the electric motor.			
Peak torque of load side [Nm]	T _{LS}	Peak torque with torque shock on load side, e. g. braking			
Vibratory torque of machine [Nm]	ΤW	Amplitude of the vibratory torque effective on the coupling			

Description	Symbol	Definition or explanation
Description	Symbol	
Damping power of machine [W]	PW	Damping power which is effective on the coupling due to the load generated by the vibratory torque
Engine power [kW]	Р	Rated power of drive
Speed [rpm]	n	Rated speed of engine
Rotational inertia coef- ficient of driving side	MA	Factor taking into account the mass distribution with shocks and vibrations generated on the driving
Rotational inertia coef- ficient of load side	ML	or load side
Mass moment of inertia of driving side [kgm ²]	JA	Total of moments of inertia existing on the driving or load side referring to the coupling speed
Mass moment of inertia of load side [kgm ²]	٦Ľ	
Mass moment of inertia of	JKA	Mass mom. of inertia of the coupl. half on the drive side
coupling [kgm ²]	JKL	Mass mom. of inertia of the coupl. half on the load side
Starting factor	SZ	Factor taking into account load caused by starting frequency per hour
Shock factor on driving side	SA	Factor taking into account the shocks arising de-
Shock factor on load side	SL	pending on the application (e. g. starting shocks)
Temperature factor	St	Temperature factor – Factor considering the lower loading capacity or larger deformation of an elasto- mer part under load particularly in case of increased temperatures.
Operating factor	SB	Factor considering the different demands on the coupling dependent on the application.
Screw tightening torque [Nm]	TA	Screw tightening torque

Temperature factor St											
	-50 °C	-30 °C/+30 °C	≤ +40 °C	≤ +50 °C	≤ +60 °C	≤ +70 °C	≤ +80 °C	≤ +90 °C	≤ +100 °C	≤ +110 °C	≤ +120 °C
ROTEX*											
T-PUR [®]	1,0	1,0	1,1	1,2	1,3	1,45	1,6	1,8	2,1	2,5	3,0
PUR	-	1,0	1,2	1,3	1,4	1,55	1,8	2,2	-	-	-
POLY-NORM [®]											
NBR 78 Shore A	-	1,0	1,2	1,3	1,4	1,6	1,8	-	-	-	-
POLY											
NBR (building block)	-	1,0	1,2	1,3	1,4	1,6	1,8	-	-	-	-
BoWex [®]											
PA 6.6	1,0	1,0	1,0	1,0	1,0	1,2	1,4	1,6	1,8	-	-
PA-CF	1,0	1,0	1,0	1,0	1,0	1,1	1,2	1,4	1,6	1,9	2,2
BoWex [®] HEW Compact	-	1,0	1,0	1,0	1,0	1,1	1,4	1,7	-	-	-
BoWex® ELASTIC®											
Standard	-	1,0	1,0	1,0	1,0	1,2	1,6	-	-	-	-
Temperature stable M.*	-	1,0	1,0	1,0	1,0	1,1	1,4	1,7	-	-	-
MONOLASTIC*											
Standard	-	1,0	1,0	1,0	1,0	1,2	1,6	-	-	-	-
BoWex® FLE-PA (PAC)											
PA 6 GF	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,2	1,4	1,6	1,8
PA-CF	1,0	1,0	1,0	1,0	1,0	1,1	1,2	1,4	1,6	1,9	2,2

* Temperature stable compound is marked with "T" in front of hardness (e. g. T 50 Sh) For the selection with PEEK spider a temperature factor is not necessary. For temperature factors for PA spiders see page 30.

Starting factor SZ							
ROTEX®, POLY-NORM®, POLY, BoWex®, BoWex® HEW Compact							
Starting frequency per hour	< 100	< 200	< 400	< 800			
SZ	1,0	1,2	1,4	1,6			
BoWex-ELASTIC®							
Starting frequency per hour	< 10	< 60	< 120	> 120			
SZ	1,0	1,5	2,0	auf Anfrage			

Shock factor S _A /S _L				
ROTEX*, POLY-NORM*, POLY, BoWex*, BoWex* HEW Compact, BoWex-ELASTIC*	S _A /SL			
Moderate shocks	1,5			
Average shocks	1,8			
Heavy shocks	2,5			

Operating factor SB				
Hydrostatic drives for BoWex [®] FLE-PA, MONOLASTIC [®]				
Applications	SB			
Wheel loaders	1,6			
Compact loaders	1,6			
Hydraulic excavators	1,4			
Mobile cranes	1,6			
Graders	1,5			
Vibration rollers	1,4			
Fork lift trucks	1,6			
Concrete mixer trucks	1,3			
Concrete pumps	1,4			
Asphalt finishers	1,4			
Concrete cutters	1,4			
Road milling machines	1,4			

Permissible load on feather key of the coupling hubs

The shaft-hub-connection has to be verified by the customer.

Permissible surface pressure according to DIN 6892 (method C).						
Cast iron GJL 225 N/mm² Powder metal steel 180 N/mm²						
Nodular iron GJS	225 N/mm ²	Aluminium diecast Al-D	200 N/mm ²			
Steel	250 N/mm ²	Aluminium semi-finished product Al-H	110 N/mm ²			
Polyamide 30 N/mm² (up to + 40 °C) For other steel materials pperm. 0,9 • R _e (Rp0.2)						

Coupling selection

The coupling selection is based on DIN 740 part 2. The coupling has to be dimensioned such that the permissible coupling load is not exceeded during any operating condition. For this purpose the actual loads have to be compared to the permissible parameters of the coupling. The torques specified T_{KN}/T_{K} max. refer to the couplings. The shaft-hub-connection has to be investigated by the customer.

1. Drives without periodical torsional vibrations

e. g. centrifugal pumps, fans, screw compressors, etc. The coupling is selected taking into account the rated torques $T_{\mbox{K}\mbox{\,max}}$ and maximum torque $T_{\mbox{K}\mbox{\,max}}$.

1.1 Load produced by rated torque

Taking into consideration the ambient temperature, the permissible rated torque T_{KN} of the coupling has to correspond at least to the rated torque T_N of the machine.

 $T_N[Nm] = 9550 \bullet \frac{P[kW]}{r}$

 $T_{KN} \ge T_N \bullet S_t$

 $T_{K max.} \ge T_{S} \bullet S_{z} \bullet S_{t} + T_{N} \bullet S_{t}$

Antriebsseitiger Stoß

 $T_S = T_{AS} \bullet M_A \bullet S_A$

Lastseitiger Stoß

 $T_S = T_{LS} \bullet M_L \bullet S_L$

n [1/min]

1.2 Load produced by torque shocks

The permissible maximum torque of the coupling has to correspond at least to the total of peak torque T_S and the rated torque T_N of the machine, taking into account the shock frequency S_Z and the ambient temperature S_t . This applies in case if the rated torque T_N of the machine is at the same time subject to shocks. Knowing the mass distribution, shock direction and shock mode, the peak torque T_S can be calcula-

help of our simulation programme.

2. Drives with periodical torsional vibrations

For drives subject to high torsional vibrations, e.g. diesel engines, piston compressors, piston pumps, generators, etc., it is necessary to perform a torsional vibration calculation to ensure a safe operation. If requested, we perform the torsional vibration calculation and the coupling selection in our company. For necessary details please see KTR standard 20004.

2.1 Load produced by rated torque

Taking into account the ambi-

ent temperature, the permissible

 $T_{KN} \ge T_N \bullet S_t$

rated torque $T_{\mbox{KN}}$ of the coupling has to correspond at least to the rated torque TN of the machine.

2.2 Passing through the resonance

Taking into account the tempera-

ture, the peak torque T_S arising when the resonance range is run through must not exceed the ma-

ximum torque T_{Kmax} of the coupling.

2.3 Load produced by vibratory torque shocks

Taking into account the ambient temperature, the permissible vibratory torque $T_{\mbox{KW}}$ of the coupling must not be exceeded by the

 $T_{KW} \ge T_W \bullet S_t$ $P_{KW} \ge P_W$

 $T_{K max} \ge T_{S} \bullet S_{t}$

highest periodical vibratory torque T_W with operating speed. For higher operating frequencies f > 10 Hz, the heat produced by damping in the elastomer part is considered as damping power P_W . The maxium allowed damping power P_{KW} of the coupling depends on the ambient tempreture and may not be exceeded by the existing damping power P_W of the drive. The damping power of torsionally rigid couplings is of miner importance.

Coupling selection for BoWex® FLE-PA and MONOLASTIC®

1. Loading by rated torque

For drives with small mass moments on the load side (hydrostatic drives) the selection can be simplified using operating factors.

 $\mathsf{T}_{\mathsf{KN}} \geq \mathsf{T}_{\mathsf{N}} \bullet \mathsf{S}_{\mathsf{B}} \bullet \mathsf{S}_{\mathsf{t}}$

Please note:

For drives subject to high torsional vibrations, e.g. diesel engines, piston compressors, piston pumps, generators, etc., it is necessary to perform a torsional vibration calculation to ensure a safe operation. This applies in particular with large mass moments of inertia on the load side. If requested, we perform the torsional vibration calculation and the coupling selection in our company.

Example of calculation

Requested:	Axial-plug in coupling d	amping vibrations	→ ROTEX®		
Application:	ation: Connection of IEC standard motor and screw compressor				
\rightarrow Coupling selection for	ollowing page 12, item	1: Drives without p	eriodical torsional vibrations		
Given: Details of driving	j side				
Rotary current motor:		Size 315 L	→ S _A =1.8 (see page 11)		
Motor output:		P = 160 kW			
Speed:		n = 1485 1/min			
Moment of inertia of drivin	ng side:	J _{Motor} = 2.9 kgm ²	2		
Starting frequency:		6 times per hour	\rightarrow S _Z = 1.0 (see page 11)		
Ambient temperature:		+ 70 °C	→ S_t =1.45 using T-PUR [®] (see page 11)		
Peak torque (starting torc	ue) T _{AS}	= 2 • T _{AN}			
Given: Details of load s	ide				
Screw compressor					
Rated torque of load side):	T _{I N} = 930 Nm			
Moment of inertia of load	side:	$J_{compressor} = 6.8$	3 kgm²		
Calculation					
1.1 Loading by rated to	MILE				
 Rated torque of drive 	Там				
• Rated torque of anive	'AN .	$T_{AN} = 9550 \bullet \frac{P[kW]}{n[1/min]}$	→ 9550 • <u>160 kW</u> = <u>1029 Nm</u>		
Rated torque of load s	ide T _{LN}	Tkn ≥ Tin • St	→ 930 Nm • 1.45 = 1348.5 Nm → TKN ≥ 1348.5 Nm		
Coupling selection					
ROTEX [®] Size 90 - sp	oider 92 Shore A with:		Mass moments of inertia of page 59		
T _{KN} = 2400 Nm			J _{KA} = 0,0673 kgm ²		
T _{K max.} = 4800 Nm			J _{KL} = 0,0673 kgm²		
1.2 Loading by torque s	hocks				
• Shock on driving side	without load torque being	g overlapping			
$T_{K max} \ge T_{S} \bullet S_7 \bullet S_t + T_N \bullet$	$S_t \rightarrow T_N = 0$				
Sh	nock on driving side TS				
	$= T_{AS} \bullet M_A \bullet S_A$	h N	6 8673 kgm²		
	$\square \square $	$A + J_{L}$ \rightarrow —	$2,9673 \text{ kgm}^2 + 6,8673 \text{ kgm}^2 \rightarrow M_A = = 0.7$		
	l	JA= JMotor +	\rightarrow 2,9 kgm ² + 0,0673 kgm ² \rightarrow J _A = <u>2,9673 kgm²</u>		
		JL= J _{compres}	sor + J _{KL} → 6,8 kgm ² + 0,0673 kgm ² → J _L = <u>6,8673 kgm²</u>		
	Starting torque TA	$S = 2 \bullet T_{AN} \rightarrow 2 \bullet 10$	29 Nm= <u>2058 Nm</u>		
→ ^{SI} =	nock on driving side TS 2058 • 0,7 • 1,8 = $2593,1$ Nm				
→ T _{K max.} ≥ 2593,1 Nm • 1 •	■ 1,45 = <u>3760 Nm</u>				
T _{K max.} mit 4800 Nm ≥ 37	760 Nm ✓				
Result					
The coupling is sufficiently d	limensioned.				

The shaft-hub-connection has to be verified by the customer separately.

Please note: